240006 Bioinformatics 2

Detaljer
Institut for Basal Husdyr- og Veterinærvidenskab   35 %
Institut for Veterinær Sygdomsbiologi   15 %
Institut for Grundvidenskab og Miljø   25 %
Institut for Plantebiologi og Bioteknologi   25 %
English titleBioinformatics 2
Tidligst mulig placeringKandidat 1.år til Kandidat 2. år
VarighedEn blok
 
Pointværdi7.5 (ECTS)
KursustypeKandidatkursus
 
EksamenSluteksamen

skriftlig prøve


Alle hjælpemidler tilladt

Beskrivelse af eksamen: Evaluation of a report based on the students own data or data provided from one of the teachers. A report is turned in by the end of the course. A plan for the report work (based on the content of the course and chosen topic) is worked out early in the course and adjusted as the course progresses.

Vægtning: Report 100%



7-trinsskala, intern censur
 
Rammer for undervisningLectures, exercises
 
BlokplaceringBlock 2
Ugestruktur: A
 
UndervisningssprogEngelsk
 
Anbefalede forudsætningerBioinformatik1, Statistik, Matematik og Databehandling, Genetik ell. tilsvarende
 
Begrænset deltagerantalNone
 
Kursusindhold
Concepts of phylogeny along with models of molecular evolution are presented and principles and methods for phylogenetic analysis will be introduced. The students will learn how to construct phylogenetic trees and to critically judge them.

Machine learning is introduced in two parts. In the first neural networks are demystified and their basic principles exmined. Their applications to prediction of protein secondary structure as well as some of their many other applications are presented. In part two
Hidden Markov models (HMMs) are presented and their application to a variety of applications shown (some overlapping with neural networks): gene finding, promoter identification (motif recognition), modelling of families and prediction of protein
secondary structure. Furthermore support vector machine will also be touched upon.

Gene finding is also introduced in two part. The first concern protein coding gene finding and is a prerequisite for downstream analyses such as function, structure, and metabolism. Several (machine learning) strategies for gene finding in anonymous DNA sequences,
e.g. ab initio strategies, similarity driven strategies, and EST-based strategies. The second concern non-coding RNA (ncRNA) genes and RNA structure (also referred to as RNA informatics). The ncRNAs have turned out to be a highly abundant class of genes which play a central roles in regulation of protein coding genes and are expressed at specific developmental stages or in specific tissues. Various examples of ncRNAs are introduced along with methods for predicting RNA structure and ncRNA genes.

Microarrays topics from introductory level (eg, Bioinformatics 1) are presented in more depth along with new analysis methods. This include steps in image scan analysis, quality control and normalization methods, and experimental designs such as reference designs, loop designs and designs for time-course experiments are presented. Statistical methods include finding significant genes, class prediction by discriminant analysis, class discovery by cluster algorithms and analysis of pathways.

An introduction to systems biology is given. It include the analysis on how the molecular interactions in the cell are described as a whole and involve eg. protein-protein
interactions and their relation to phenotypes. It also include the analysis of metabolites (metabolics) and can be used to classify transgenic organisms and to investigate the effects of external impacts, such as drug delivery, at the metabolite level. Methods for analyzing these types of data will be described.



Details can be found at http://genome.ku.dk/courses/bioinformatics2
 
Undervisningsform
Lectures and exercises with supervision as well as group work with exercises. Case work for example in relation to a scientific paper can also take place.
 
Målbeskrivelse
Knowledge and understanding:
To obtain basic knowledge from both a practical and theoretical viewpoint of concepts in bioinformatics that exceeds a pure introductory level. To acquire an overview of machine learning methods applied in bioinformatics. To point to which bioinformatics method which is suitable for analysis of a various types of data.

Skills:
To be able to decide which methods are suitable which given type of data. To reason and account for strengths and weaknesses of methods suitability for particular types of data analysis. Then to apply the methods in their respective contexts. To help (eg. team) collaborators identify the relevant methodologies to be applied for a given problem.

Competences:
To apply the methods on types of problems and data not presented explicitly in the course and thereby to evalutate the principles, strengths and weaknesses of higher level bioinformatics method on known and novel types of data. To apply the methods in practical work and work independently with them, eg, within a team.

 
Litteraturhenvisninger
A compendium and other litterature will be available prior to course start
 
Kursusansvarlig
Jan Gorodkin, gorodkin@genome.ku.dk, Institut for Basal Husdyr- og Veterinærvidenskab/Genetik & Bioinformatik, Tlf: 35333578
 
Studienævn
Studienævn NSN
 
Kursusbeskrivelsesomfang
forelæsninger35
praktiske øvelser40
projektarbejde80
forberedelse36
vejledning5
teoretiske øvelser10

206